5,983 research outputs found

    The direct evaluation of attosecond chirp from a streaking measurement

    Full text link
    We derive an analytical expression, from classical electron trajectories in a laser field, that relates the breadth of a streaked photoelectron spectrum to the group-delay dispersion of an isolated attosecond pulse. Based on this analytical expression, we introduce a simple, efficient and robust procedure to instantly extract the attosecond pulse's chirp from the streaking measurement.Comment: 4 figure

    Universal Heat Conduction in YBa_2Cu_3O_6.9

    Full text link
    The thermal conductivity of YBa_2Cu_3O_6.9 was measured at low temperatures in untwinned single crystals with concentrations of Zn impurities from 0 to 3% of Cu. A linear term kappa_0/T = 0.19 mW/K^2.cm is clearly resolved as T -> 0, and found to be virtually independent of Zn concentration. The existence of this residual normal fluid strongly validates the basic theory of transport in unconventional superconductors. Moreover, the observed universal behavior is in quantitative agreement with calculations for a gap function of d-wave symmetry.Comment: Latex file, 4 pages, 3 EPS figures, to appear in Physical Review Letter

    Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic.

    Get PDF
    Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics.IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest levels of excess mortality. Here, we demonstrate that this phenomenon was not unique to the 1918 H1N1 pandemic but that it also occurred during the contemporary 2009 H1N1 pandemic and 2013-2014 H1N1-dominated season for those born during the heterosubtypic 1957 H2N2 "Asian flu" pandemic. These data highlight the heretofore underappreciated phenomenon that, in certain instances, prior exposure to pandemic influenza virus strains can enhance susceptibility during subsequent pandemics. These results have important implications for pandemic risk assessment and should inform laboratory studies aimed at uncovering the mechanism responsible for this effect

    Accurate Mg/Ca, Sr/Ca, and Ba/Ca ratio measurements in carbonates by SIMS and NanoSIMS and an assessment of heterogeneity in common calcium carbonate standards

    Get PDF
    As archives of past climate variability, the micron and sub-micron scales of element:calcium (Me/Ca) variability in both biogenic and inorganic carbonates contain important geochemical information. Ideally working at smaller and smaller scales leads to higher temporal resolution of past changes, but more often it has revealed the strong overprint of other processes on the climate signal. Therefore, the role of SIMS and NanoSIMS techniques in studying paleoenvironmental proxies continues to increase. We evaluate the accuracy and precision of the CAMECA ims 7F-GEO and NanoSIMS-50L ion probes for measurements of Sr/Ca, Mg/Ca, and Ba/Ca ratios in carbonate minerals. Nine carbonate reference materials were examined for their ^(88)Sr/^(42)Ca, ^(24)Mg/^(42)Ca, and ^(138)Ba/^(42)Ca ratios using a primary O^− beam with spot sizes of 20–40 μm (SIMS) and 0.8–2 μm (NanoSIMS). To assess accuracy, seven of these standards were analyzed for Sr/Ca and Mg/Ca with ID-ICP-MS. Variability in the elemental ratios arising from drift and changes in the tuning of the ims 7F-GEO over a nine month period is smaller than the chemical heterogeneity of the most frequently analyzed standards (OKA and Blue-CC). Across a whole crystal, Blue-CC is more homogeneous (1σ of 2.39% and 1.60% for Sr/Ca and Mg/Ca respectively) than OKA, but in the bulk matrix of OKA there is even less variability (1σ of 0.85% and 0.83% respectively). We find that carbonate samples can be accurately normalized to carbonate standards with significantly different absolute Me/Ca ratios. NanoSIMS intensity ratios follow counting statistics better than ± 1% (2σ) at any one spot, but conversion to Me/Ca ratios increases the uncertainty. Two factors give rise to this limitation. First, the spatial heterogeneity of nominally homogeneous standards can lead to accuracy offsets that are as large as the ranges quoted above. Second, the NanoSIMS generates higher instrumental mass fractionation relative to SIMS. The combination of three different analytical techniques demonstrates that Blue-CC and homogeneous calcite zones in OKA are promising reference materials for precise analyses. Accuracy is crucially dependent on making independent measurements on exactly the same crystal of standard used in the SIMS and NanoSIMS machines

    Evaluating elbow osteoarthritis within the prehistoric Tiwanaku state using generalized estimating equations (GEE).

    Get PDF
    OBJECTIVES:Studies of osteoarthritis (OA) in human skeletal remains can come with scalar problems. If OA measurement is noted as present or absent in one joint, like the elbow, results may not identify specific articular pathology data and the sample size may be insufficient to address research questions. If calculated on a per data point basis (i.e., each articular surface within a joint), results may prove too data heavy to comprehensively understand arthritic changes, or one individual with multiple positive scores may skew results and violate the data independence required for statistical tests. The objective of this article is to show that the statistical methodology Generalized Estimating Equations (GEE) can solve scalar issues in bioarchaeological studies. MATERIALS AND METHODS:Using GEE, a population-averaged statistical model, 1,195 adults from the core and one colony of the prehistoric Tiwanaku state (AD 500-1,100) were evaluated bilaterally for OA on the seven articular surfaces of the elbow joint. RESULTS:GEE linked the articular surfaces within each individual specimen, permitting the largest possible unbiased dataset, and showed significant differences between core and colony Tiwanaku peoples in the overall elbow joint, while also pinpointing specific articular surfaces with OA. Data groupings by sex and age at death also demonstrated significant variation. A pattern of elbow rotation noted for core Tiwanaku people may indicate a specific pattern of movement. DISCUSSION:GEE is effective and should be encouraged in bioarchaeological studies as a way to address scalar issues and to retain all pathology information

    Femtosecond Spectroscopy with Vacuum Ultraviolet Pulse Pairs

    Get PDF
    We combine different wavelengths from an intense high-order harmonics source with variable delay at the focus of a split-mirror interferometer to conduct pump-probe experiments on gas-phase molecules. We report measurements of the time resolution (<44 fs) and spatial profiles (4 {\mu}m x 12 {\mu}m) at the focus of the apparatus. We demonstrate the utility of this two-color, high-order-harmonic technique by time resolving molecular hydrogen elimination from C2H4 excited into its absorption band at 161 nm

    Triplanar Model for the Gap and Penetration Depth in YBCO

    Full text link
    YBaCuO_7 is a trilayer material with a unit cell consisting of a CuO_2 bilayer with a CuO plane of chains in between. Starting with a model of isolated planes coupled through a transverse matrix element, we consider the possibility of intra as well as interplane pairing within a nearly antiferromagnetic Fermi liquid model. Solutions of a set of three coupled BCS equations for the gap exhibit orthorhombic symmetry with s- as well as d-wave contributions. The temperature dependence and a-b in plane anisotropy of the resulting penetration depth is discussed and compared with experiment.Comment: To appear in Physical Review B1 01Mar97; 12 pages with 10 figures; RevTeX+eps
    • …
    corecore